翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Thorium Series : ウィキペディア英語版
Decay chain
In nuclear science, the decay chain refers to the radioactive decay of different discrete radioactive decay products as a chained series of transformations. They are also known as "radioactive cascades". Most radioisotopes do not decay directly to a stable state, but rather undergo a series of decays until eventually a stable isotope is reached.
Decay stages are referred to by their relationship to previous or subsequent stages. A ''parent isotope'' is one that undergoes decay to form a ''daughter isotope''. One example of this is uranium (atomic number 92) decaying into thorium (atomic number 90). The daughter isotope may be stable or it may decay to form a daughter isotope of its own. The daughter of a daughter isotope is sometimes called a ''granddaughter isotope''.
The time it takes for a single parent atom to decay to an atom of its daughter isotope can vary widely, not only for different parent-daughter chains, but also for identical pairings of parent and daughter isotopes. While the decay of a single atom occurs spontaneously, the decay of an initial population of identical atoms over time ''t'', follows a decaying exponential distribution, ''e−λt'', where λ is called a decay constant. Because of this exponential nature, one of the properties of an isotope is its half-life, the time by which half of an initial number of identical parent radioisotopes have decayed to their daughters. Half-lives have been determined in laboratories for thousands of radioisotopes (or, radionuclides). These can range from nearly instantaneous to as much as 1019 years or more.
The intermediate stages each emit the same amount of radioactivity as the original radioisotope (though not the same energy). When equilibrium is achieved, a granddaughter isotope is present in direct proportion to its half-life; but since its activity is inversely proportional to its half-life, each nuclide in the decay chain finally contributes as much radioactivity as the head of the chain, though not the same energy. For example, uranium-238 is weakly radioactive, but pitchblende, a uranium ore, is 13 times more radioactive than the pure uranium metal of the same amount because of the radium and other daughter isotopes it contains. Not only are unstable radium isotopes significant radioactivity emitters, but as the next stage in the decay chain they also generate radon, a heavy, inert, naturally occurring radioactive gas. Rock containing thorium and/or uranium (such as some granites) emits radon gas that can accumulate in enclosed places such as basements or underground mines. Radon exposure is considered the leading cause of lung cancer in non-smokers.〔http://www.epa.gov/radon/〕
== History ==
All the elements and isotopes we encounter on Earth, with the exceptions of hydrogen, deuterium, helium, helium-3, and perhaps trace amounts of stable lithium and beryllium isotopes which were created in the Big Bang, were created by the s-process or the r-process in stars, and for those to be today a part of the Earth, must have been created not later than 4.5 billion years ago. All the elements created more than 4.5 billion years ago are termed ''primordial'', meaning they were generated by the universe's stellar processes. At the time when they were created, those that were unstable began decaying immediately. All the isotopes which have half-lives less than 100 million years have been reduced to 0.0000000000028% (%) or less of whatever original amounts were created and captured by Earth's accretion; they are of trace quantity today, or have decayed away altogether. There are only two other methods to create isotopes: ''artificially'', inside a man-made (or perhaps a natural) reactor, or through decay of a parent isotopic species, the process known as the ''decay chain''.
Unstable isotopes are in a continual struggle to become more stable; the ultimate goal is becoming one of the 200 or so stable isotopes in the universe. Stable isotopes have ratios of neutrons to protons in their nucleus that start out at 1 in stable helium-4 and smoothly rise to ~1.5 for lead (there is no complete stability for anything heavier than lead-208). The elements heavier than that have to shed weight to achieve stability, most usually as alpha decay. The other common method for isotopes of the proper weight but high n/p ratio is beta decay, in which the nuclide changes elemental identity while keeping the same weight and lowering its n/p ratio. Also there is an inverse beta decay, which assists isotopes too light in neutrons to approach the ideal; however, since fission almost always produces products which are neutron heavy, positron emission is relatively rare compared to beta emission. There are many relatively short beta decay chains, at least two (a heavy, beta decay and a light, positron decay) for every discrete weight up to around 207 and some beyond, but for the higher weight elements (often referred to as "transuranics", but actually used for all isotopes heavier than lead) there are only four pathways in which all are represented. This fact is made inevitable by the two decay methods possible: alpha radiation, which reduces the weight by 4 AMUs, and beta, which does not change the weight at all (just the atomic number and the p/n ratio). The four paths are termed 4n, 4n + 1, 4n + 2, and 4n + 3; the remainder of the atomic weight divided by four gives the chain the isotope will use to decay. There are other decay modes, but they invariably occur at a lower probability than alpha or beta decay.
Three of those chains have a long-lived isotope near the top; they are bottlenecks in the process through which the chain flows very slowly, and keep the chain below them "alive" with flow. The three materials are uranium-238 (half-life=4.5 billion years), uranium-235 (half-life=700 million years) and thorium-232 (half-life=14 billion years). The fourth chain has no such long lasting bottleneck isotope, so almost all of the isotopes in that chain have long since decayed down to very near the stability at the bottom. Near the end of that chain is bismuth-209, which was long thought to be stable. Recently, however, Bi-209 was found to be unstable with a half-life of 19 billion billion years; it is the last step before stable thallium-205. In the far past, around the time that the solar system formed, there were more kinds of unstable high-weight isotopes available, and the four chains were longer with isotopes that have since decayed away. Today we have manufactured extinct isotopes, which again take their places: plutonium-239, the nuclear bomb fuel, as the major example has a half-life of "only" 24,500 years, and decays by alpha emission into uranium-235.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Decay chain」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.